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ABSTRACT

The use of cell suppression to protect the confidentiality of respondent data in business statistics
publications is common practice. This practice has been automated for some time. This note looks
at the computational approximations and heuristics used as the basis of the automation. A good
cell suppression pattern is obtained with of an optimization method applied to a figure of merit of
proposed cell suppression patterns. Various figures of merit have been proposed which produce
varying qualitative characteristics in the resulting cell suppression patterns. A number of deficien-
cies in the common greedy sequential heuristic can be identified in standard examples of cell sup-
pression patterns. Modifications directed at reducing these deficiencies may be constructed.
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1. INTRODUCTION
The use of cell suppression to protect the confidentiality of respondent data in business statistics publications is

common practice. This practice has been automated for some time (Robertson 1993). The purpose of this note is to
look at the computational approximations and heuristics used as the basis of the automation. We assume that the
general setup is known from other work so that we may focus on computational issues.

The typical business statistics publication is a cross tabulation with a low number, typically only two or three,
of dimensions or classification variables but with each classification variable having a hierarchical structure of mod-
erate depth. A typical Standard Industrial Classification (SIC) classification variable has four digit industries, three
digit major industries, two digit industry groups, one digit industry divisions and a (no digit) grand total. A typical
geographical classification variable may follow alternate hierarchical structures to allow either locality, county and
region or locality, metropolitan area and region with regions grouped into states or provinces and these into a na-
tional total. The counties and metropolitan areas do not properly contain each other so it is technically inaccurate to
describe this as a hierarchy, although we will abuse the terminology when the alternate hierarchical structures are
available. With such classification variables, many tabulation cells are defined. We will describe these as either inter-
nal cells that are not further disaggregated or as marginal cells that may be disaggregated. Various other cells arise
that are not part of the natural structure, which we will call miscellaneous aggregations. The use of two hierarchical
classification variables will technically lead to a lattice of cell types. This restates the fact that a subtotal at the first
level of disaggregation of the first classification variable may or may not be more or less disaggregated than a subto-
tal at the first level of disaggregation of the second classification variable as there is only a partial ordering under the
notion of degree of disaggregation. There are often additional subtotals introduced to allow historical continuity or to
allow some aspect of the subject matter to be represented that does not easily follow from the coding structure.
Grouping of manufacturing into durable and nondurable goods is a common example that could be described as the ad
hoc introduction of additional hierarchy into the classification variable. For the purposes of cell suppression we will
want to know all cells that are logically defined. This may differ from the publication as it may not include some
cells either because they are of low interest in an already bulky publication or they are part of highly disaggregated
tables that would be mostly suppressed so little is lost by not publishing the few remaining cells.

Other miscellaneous aggregations will be purely of a technical nature, introduced as part of the definition of the
cell suppression problem to allow for the presence of multiple establishment enterprises that contribute to multiple
cells and for cells with very low enterprise counts. When the pooled sensitivity of two cells is close to the upper
bound permitted by subadditivity we will represent the pooling explicitly with a miscellaneous aggregation. This
allows the cell suppression computation to make the approximation that pooled sensitivities are close to the lower
bound permitted by subadditivity. These technical miscellaneous aggregations will tend to be sensitive. Their com-
ponents may be either sensitive cells or nonsensitive cells which will often be nearly sensitive. To further abuse the
terminology, it is sometimes convenient to identify the naturally defined sensitive aggregations and exclude these
technically defined sensitive aggregations.

The cell suppression problem is defined by this collection of cells, some of which are identified as being sensi-
tive, and a set of relationships that define some of the cells as aggregations of other cells. The design of a suitable
publication pattern is the final goal. We must define what we mean by suitable. The most immediate requirement is
that there be no inadvertent residual disclosures, either exact or approximate, in the publication pattern.
2. BASICÊFRAMEWORK

The basic mathematical framework is to view possible publications as points in a high dimensional space.
There will be a special point which is the values that are listed internally where all of the values, sensitive or not,
are shown including the cells that may not make it into the released publication. This point satisfies the defining



relationships between the cells and is a feasible point in mathematical programming terminology. Before the publi-
cation is released, the end users will have various estimates of the values of the cells. This is the prior knowledge
that is used to construct the sensitivity criteria. The prior knowledge can be represented a collection of points in the
publication space. The assumption is that this prior knowledge is not grossly in error and it is often treated as if it
allowed the end user estimates to be between 50 and 150 percent of the true values. The detailed choices will yield
varying parameters in the sensitivity criterion. This can be compactly represented as a polyhedron that represents the
prior knowledge with the internal publication as a point in the interior of the polyhedron. When we publish some of
the cell values, we provide values for some of the coordinates in the publication space that will act to restrict the
consistent cell values to a polyhedron that is contained in the prior knowledge polyhedron. The released publication
will not, if correctly done, permit the values for sensitive cells to be determined too accurately. The precise arith-
metical meaning of too accurately will be specified as part of the sensitivity criterion. The design problem is to en-
sure that the publication is done correctly. Each sensitive cell will specify a collection of polyhedra that are the
boundaries between too accurate and not too accurate. The specification is just a requirement on some coordinates in
the publication space. Some member of this collection must be contained in the publication polyhedron. And this
must be true for all the sensitive cells. Our interest will be in deviations about the internally known nominal value,
so we will often use the polyhedron of deviations that is centered about zero rather than the publication polyhedron
that is centered about the nominal values without commenting on this change of reference point.

To form a metaphor for this we can think of a box containing a nest of Russian dolls. The box is the prior
knowledge polyhedron and the outer doll is the released publication polyhedron. Rather than a nest of dolls, we have
a variety of inner dolls that must all fit inside the outer doll. The inner dolls are not really of fixed shape but can be
described as bean bags that have a childÕs jack inside them. We want to design the outer doll to fit inside the box and
to allow each of the bean bags to be contained in it.
3. OBJECTIVEÊFUNCTION

To use optimization techniques to design a publication pattern, we need an objective function to assign a figure
of merit to possible patterns so that good, or even the best, patterns can be found. A common suggestion for an ob-
jective function for a cell suppression pattern is the count of cells suppressed. However, some observe that the cells
are of differing size and should not be treated equally. The suggestion then becomes that the objective function
should be the sum of the values of the cells suppressed. Both justifications are straight forward and quite similar.
When ready justifications specify rather different objective functions it is safe to assume that we have just learned
that no justification is likely to be convincing.

When we look at publications with suppressed cells we will see that not all suppressions are the same. We will
have to decide whether it makes sense to consider a partially suppressed cell. In technical terms this is the question of
whether we are to use integer variables to capture all of the cell value or to use continuous variables to capture part
of the cell value. If a marginal cell is suppressed, not all of its disaggregates will also be suppressed. The remaining
disaggregates provide a lower bound on the possible values that the marginal cell might have. The presence of defin-
ing relationships for marginal cells renders the justification for integer variables much less convincing. Without the
defining relationships there would be no problem to solve and each suppression would automatically be all or noth-
ing. There is also the practical consideration that integer variables make optimization problems harder to perform.
One effect of the defining relations being only unweighted sums of cells is to cause the continuous computations to
take on the same value with fluctuating sign in many simple cases. The difference between the two computational
modes will often be rather small in the common simple cases, with the differences arising when simple cases are
mixed together.

We can look at the use of disaggregates to estimate a lower bound for a marginal cell. Perhaps we should just
apply our criteria to internal cells and take whatever that implies for the marginal cells. This will have the effect of
suppressing many higher level aggregates and almost certainly the grand total which is the broadest of the aggre-
gates. This is quite contrary to the design intent of a typical business survey and would not be considered acceptable.
It does however keep bringing us back to the underlying question of what is a sensible figure of merit.

The figure of merit for a publication pattern is often called the information in the pattern. There are many in-
formation measures and a theory that characterizes them. For observed functions, such as the cell values, we would
use the Berg entropy rather than the Shannon entropy used for probability distributions. The information of a cell
would be the logarithm of the cell value. When we use the logarithm of the cell value as a coefficient in an objective
function we may have negative coefficients. This can be avoided by the use of the started logarithm, log(1+x). Loga-
rithm is a common transformation for business data where it is often called ratio scaling.

Without a convincing prior argument we can always look at existing manual practice for suggestions of an ob-
jective function. Manual practice seems to seek two contradictory goals. There is a desire to avoid the suppression of
large cells. This reflects the aspect of subject matter expertise of knowing which things are big. There is a desire to
suppress only a few complements. This reflects the aspect of subject matter expertise of knowing the patterns in the
data of which things are small, tiny or absent. For the cell suppression problem the absent, or empty, cells are
known values of zero. The practice seems to be a balance between the small number of large cells that counting
would yield and the many small cells that summing values would yield. Trials with counting suppressions, the Berg
entropy or summing the values of suppressions tend to choose the middle ground as an acceptable balance.
4. GREEDYÊSEQUENTIALÊHEURISTIC

We have a problem with a number of cells, some of which have been specified as being sensitive, and an objec-
tive function that is a figure of merit for proposed suppression patterns. For each cell we will have a nominal value



about which there are departures. The nominal values will satisfy a number of defining relationships, as will the
departures. The departures will be xi restricted to lie between numerically specified bounds, that would typically be
-1/2 to +1/2 of the nominal value. We may collect this into the form DÊxÊ=Ê0 with lÊ£ÊxÊ£Êu where the matrix D
represents the various defining relationships with coefficients of 0, 1 and -1. This form with an equality relationship
in the equations and lower and upper bounds on the variables arises naturally here.  It called the standard form and is
commonly used in linear programming codes. These conditions define the prior knowledge polyhedron. To protect a
single sensitive cell we impose the condition that the departure for that cell be above the restricted range. The prob-
lem definition is symmetric about the nominal values, so we could equally well have imposed the restriction that the
departure would be below the restricted range. We would have   l  i £ xi £ ui for a new value of   l  i. To satisfy the defin-
ing relations some other xj will be nonzero and we would say that those other cells are to be suppressed. There are
many possible choices of the other cells. We would choose to minimize the objective c'|x|. To deal with the absolute
values |x| we would either use an optimization code that does l1 fitting or use the representation of a general variable
as the difference of two positive variables. The objective function coefficients for the sensitive cells would be set to
zero as we already know that those cells can not be published. Other cells that are known to be suppressed or other-
wise absent from the publication would also be given a zero coefficient.

This will protect a single chosen sensitive cell. We can protect all the cells by choosing each one in turn. This
is the basis for the usage sequential in the name. After any cell is protected, we will have a more extensive list of
known suppressed cells for the next sensitive cell to be protected. This will allow cells chosen later to benefit from
the complements that have already been chosen. If we examine the departures used to protect any particular sensitive
cell, we may notice that they are adequate to protect some other sensitive cell. We would say that such a sensitive
cell has been protected in passing and we would not need to choose it for explicit protection. If the initial cell chosen
is the most sensitive cell and the cells chosen in turn are the most sensitive cells not yet protected, we would be
following a common strategy usually known as the greedy algorithm. The combination leads to the name of greedy
sequential heuristic.

Such an algorithm was implemented in the Statistics Canada Confidentiality Studies Software (CONFID) re-
search prototype automated cell suppression system in 1979 and has been in use since then (Sande 1984). It is also
the basis of the later versions of the USBC automated cell suppression system (Kirkendall and Sande 1998). The
greedy sequential heuristic arises naturally in many problems. For most problems it provides a sensible starting
point and for many it is even a sensible solution. For a limited number of special problems it can be proven to pro-
vide an optimal solution. It is not optimal for the knapsack problem which implies that it can not be optimal for the
cell suppression problem.

In terms of our metaphor of nested Russian dolls, we first fit the outer doll around the largest bean bag to get an
initial shape. In the process we fix the shape of the first bean bag. We now expand the outer doll to fit the next larg-
est bean bag. Its shape will be partially determined by the outer dollÕs accommodation of earlier bean bags and par-
tially by the jack that it contains. We continue through the bean bags in turn. Some will already fit and some will
require expansion of the outer doll.
5. DEFECTSÊOFÊTHEÊGREEDYÊSEQUENTIALÊHEURISTIC

The heuristic is quite effective but various types of defects can be noted. Below are three configurations for
which the heuristic does not produce optimal results. We use the total value objective function for toy examples.
5.1. SequentialÊComputationÊDefect

If we consider the table
40 16 4 4 16
16 10 s 2 0 4
4 2 2 0 0
4 0 0 2 2
16 4 0 2 10 s

in which the two cells with value 10 are sensitive and require protection. The sequential heuristic will yield the table
40 16 4 4 16
16 10 s 2 c 0 4
4 2 c 2 c 0 0
4 0 0 2 c 2 c
16 4 0 2 c 10 s

with 6 complements with a total value of 12. Rather we might have sought
40 16 4 4 16
16 10 s 2 0 4 c
4 2 2 0 0
4 0 0 2 2
16 4 c 0 2 10 s

that has 2 complements with a total value of 8. Both sensitive cells are protected. The value of the complements is
greater than in the sequential steps. This example illustrates the need for protecting more than one cell at each step.
5.2. ComputationÊOrderÊDefect

If we consider the table



100 40 40 20
25 15 s 10 0
20 10 10 0
35 15 10 10
20 0 10 10 s

in which the sensitive cell of value 15 is protected before the sensitive cell of value 10. The result will be the table
100 40 40 40
25 15 s 10 c 0
20 10 c 10 c 0
35 15 10 c 10 c
20 0 10 c 10 s

in which only one internal cell is released. If we protect the cells in the other order we will obtain the table
100 40 40 40
25 15 s 10 c 0
20 10 10 0
35 15 c 10 c 10 c
20 0 10 c 10 s

in which two internal cells are released. The second step was able to use a complement from the first step in the re-
vised sequence of computation.
5.3. KnapsackÊProblemÊDefect

If we consider the table
16 10 s 4 2

in which the sensitive cell needs to be protected by cells of size 2, we obtain the table
16 10 s (2) 4 2 c (2)

If the sensitive cell needs protection by cells of size 4, we obtain the table
16 10 s (4) 4 c (2) 2 c (2)

If the sensitive cell needs protection by cells of size 6, we obtain the table
16 10 s (6) 4 c (4) 2 c (2)

However, for the intermediate case we could also have obtained the table
16 10 s (4) 4 c (4) 2

This type of defect arises in continuous based optimization which may partially use the larger complementary cells.
6. RESOLVINGÊTHEÊDEFECTS

With instructive examples of the various forms of defects in the greedy sequential heuristic, we may develop re-
finements in the computational process to address the defects.
6.1. KnapsackÊProblemÊDefect

The presence of knapsack problems within cell suppression problems has long been noted. They form the theo-
retical basis for the proofs that the cell suppression problem is a hard problem within the definitions of complexity
theory. There are well known methods for solving knapsack problems. For cell suppression those methods translate
into integer programming methods for obtaining solutions of the single cell protection problem.

If we consider the table
16 10s 3 2 1

in which the sensitive cell needs to be protected by cells of size 4 we get the table
16 10 s (4) 3 c (1) 2 c (2) 1 c (1)

A continuous optimizer would first use the cell of size 1, then the cell of size 2 and finally the cell of size 3. This is
the simplest approximation to a knapsack solution in which one keeps adding the small items until the threshold is
exceeded, for our variant where we want the smallest summation that exceeds the specified value. We can improve
this by reversing the order of inclusion to eliminate some of the smallest cells and obtain the table

16 10 s (4)  3 c (3)  2 c (1) 1
To achieve this in a cell suppression problem we would need to do several things to convert the standard problem
into this two stage problem. We would treat all of the cells released by the initial solution as fixed for this stage.
The objective function would have to give preference to the largest complements, as distinct from the earlier solution
where it gave preference to smaller complements. The coefficients in the objective function could be log(1+x)/(1+x)
or perhaps 1/x. The reduction of a cell suppression method to the implied knapsack method often provides useful
insights into the cell suppression method.

The table
16 10 s (4) 3 c (3) 2 1 c (1)

would be an even better solution but would require an integer based optimizer to find such a solution. There is ample
opportunity to adapt integer optimization methods to the cell suppression problem and solve this knapsack defect
more fully than the continuous based optimization methods.
6.2. ComputationÊOrderÊDefect

When we watch the greedy sequential heuristic in operation, we see some large complements arising in the later
steps of the computation. We would say that it has not been able to look ahead to discover these large complements.



To improve the look ahead capability we can redo the computation except on the second trial we already know the
large complements from the later stages. We can make the heuristic assumption that they will be unchanged under
other orderings of the steps. They will be rediscovered so we might as well supply them at the beginning of the sec-
ond trial. This can be readily implemented by a first phase that determines a suppression pattern including the large
complements and a second phase that starts with the large complements and determines a suppression pattern.

We could alternately say that the method of ordering the sequential steps is the defect. The ordering should be
based on the size of the complements that each sensitive cell requires. This information is not initially available but
can be constructed. We would treat each sensitive cell as an independent problem in a first phase used to determine
the size of the complements required. For the second phase we would use the usual greedy sequential heuristic com-
putation with the revised ordering based on the size of the complements. This can be readily implemented although
the number of independent problems in the first phase will be larger than the number of steps in the greedy sequen-
tial heuristic as no sensitive cells will be protected in passing with the saving in computational cost that results.
6.3. SequentialÊComputationÊDefect

To avoid the sequential computation defect we would need to do all of the single cell protection cases in a single
step. We would keep track of the extreme case over the concurrent cases. The extreme case would serve as an envelop
for the individual cases which protect individual sensitive cells. The envelop would not satisfy the defining relations
although the individual cases would. The combining rule which gives the envelop is to take the minimum and
maximum. This can readily be done as the inequalities that represent this operation are just Ð x iÊ£ Ê x j,iÊ£ Ê x i where xi
is a variable in the envelop and xj,i is the corresponding variable in individual case j. Only the envelop variables
would appear in the objective function. Sensitive and presuppressed cells would not require envelop variables as their
effect on the envelop is already known although they may be needed for other purposes. The number of variables
goes up quickly as we need to represent the envelop, the individual cases and the slack variables with respect to the
envelop. In earlier mainframe computing eras this would not have been contemplated as there was not enough mem-
ory available for the many variables. Contemporary workstations have adequate memory to allow this to be easily
done for toy problems. Small production problems can also be done for important publications and to gain insight
into the importance of the sequential computation defect.

When a table has a simple structure, the defining relationships correspond to a network structure. Many algo-
rithms for cell suppression are based on this simplifying assumption as it permits the use of the network simplex
algorithm for the underlying optimization in the greedy sequential heuristic. The network simplex algorithm has a
particularly elegant theory and permits very efficient implementations. When we combine several copies of a net-
work, as we do here, with a maximum operator the result is no longer a network. Even for the simple example given
above, the combined equation system will not correspond to a network.

In terms of the Russian doll metaphor, the envelop is the outer Russian doll that we are seeking to design. The
inner bean bags are the individual cases with only a few actually preventing the outer doll from shrinking further.

Various techniques are used in operations research to exploit the fact that only a few of the equations are active.
These techniques have many adaptations to identify the active equations that are required to define the solutions. Fre-
schetti and Salazar (1998) have developed a method motivated by the BenderÕs decomposition for mixed integer pro-
grams with the addition of various speedups. They use an objective function of weighted integer variables. One of
their speedups is a version of the common logical heuristic of requiring at least two suppressions in an equation
when any suppressions are present. They do not note the connection.

If we look at defining equation j from DÊxÊ=Ê0  we will have S iÊs j,iÊx j,iÊ=Ê0  where s j,i are the plus or minus
coefficients. If some xj,i is not zero, then there will be at least one other xj,i which is also not zero, and similarly for
the corresponding envelop variables xi. For the envelop variables we will have x kÊ£ ÊS i¹kÊx i where k may be any of
the indices in the equation. This is the numerical version of the logical requirement that there be either no suppres-
sions or two or more suppressions in every equation. The derivation is a repeated application of the triangle inequal-
ity for absolute values after the original defining equation has been rearranged so that the chosen term equals a com-
bination of the other terms followed by recalling the definition of the envelop variables. Each of the original defining
equations will correspond to several of these relationships in the envelop variables. We could treat them as equations
in only the envelop variables with none of the variables x j,i present. The logical requirement is known to be neces-
sary but not sufficient for the prevention of disclosures. The numerical version has the same problem as can be
shown by the standard examples. We have two possible resolutions to this problem.

We may view a solution with only the envelop variables as an initial approximation, or good starting value, for
the greedy sequential heuristic. By the time the greedy sequential heuristic completes it will have protected every
sensitive cell by adding any required complements. There may be some spurious complements so a knapsack prob-
lem clean up phase would be indicated.

We may also view each residual disclosure in the envelop variables only solution as an indication of a missing
equation. This missing equation will be obtained by combining the existing equations in ways which effect the
maximization for the envelop variable differently than those already present. The combination may be found using
linear programming duality theory for each disclosure. A group of new equations in the envelop variables may be
added to those already known and a new solution attempted. This is the basis of the BenderÕs decomposition method
of Freschetti and Salazar. Use of only the active equations, and other operations research improvements, are also part
Freschetti and SalazarÕs method.



7. COMPUTATIONALÊEXPERIENCE
The knapsack problem defect has been addressed by the two pass strategy with revised weights in both CONFID

and the ACS Suite of software. The second, or clean up, pass releases many complements. The use of two passes is
the default operational mode for the ACS Suite (Sande 1999).

The various heuristics have been exercised with the EIA test data. The reordering and look ahead strategies pro-
vide incremental improvements. The improvements from the clean up of the greedy sequential heuristic deserve to be
described as more that just incremental.

By monitoring the suppressions in the internal cells and the marginal cells separately, we can gain some insight
into the effects of the varying objective functions. The number of cells suppressed increases as the objective changes
from the count of suppressed cells, to the of suppressed cells entropy and then to the sum of suppressed values. This
masks the effect that the number of internal cells suppressed is increasing while the number of marginal cells sup-
pressed fluctuates. The total value of the suppressed cells is decreasing with the value of the suppressed marginal
cells showing the greatest decrease while the value of the suppressed internal cells declines and fluctuates. The en-
tropy of the both the internal and marginal suppressed cells is least for the entropy objective with the internal cells
more closely matched by the count objective and the marginal cells more closely matched by the value objective.
The overall behaviors of the objective functions match their descriptions although the descriptions might not have
suggested the form of the balancing between the suppression of internal and marginal cells.

The simultaneous computation is more expensive than the greedy sequential heuristic even when it is with the
envelop variables only. When the same number of cells are present in a two dimensional structure and a three dimen-
sional structure the computational cost is markedly different, with the three dimensional much more expensive. This
major difference had not been observed with the greedy sequential heuristic. For the sequential greedy heuristic a three
dimensional structure will usually have a slightly higher count of equations than the same number of cells in a two
dimensional structure. The equation count difference is greater in the envelop variables only problems but the time
differences are even greater. Freschetti and Salazar also report increased computational costs when they move away
from two dimensional examples.

Objective Function Coefficients
Value Entropy Count

Value Measure
 Internal 12 42687 11 74618 64 46070
 Marginal 3 18507 25 94011 118 53544
 Total 15 61194 37 68629 182 99614
Entropy Measure
 Internal 3683.1 2948.1 3202.3
 Marginal   725.5   673.9    969.0
 Total 4408.6 3622.0 4171.3
Count Measure
 Internal 561 439 401
 Marginal 102 78 93
 Total 663 517 494

8. CONCLUSIONS
The greedy sequential heuristic is quite effective. It arises naturally and has been rediscovered repeatedly. Various

defects in it can be recognized as having understandable sources that lead to refinements in the basic algorithm. These
refinements produce improved suppression patterns.

The Russian doll metaphor illustrates the way in which the greedy sequential heuristic, with extra passes, natu-
rally approximates the simultaneous computation.
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